首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2445篇
  免费   458篇
  国内免费   602篇
测绘学   31篇
大气科学   355篇
地球物理   539篇
地质学   1658篇
海洋学   356篇
天文学   55篇
综合类   141篇
自然地理   370篇
  2024年   5篇
  2023年   25篇
  2022年   62篇
  2021年   77篇
  2020年   72篇
  2019年   92篇
  2018年   64篇
  2017年   79篇
  2016年   76篇
  2015年   82篇
  2014年   110篇
  2013年   166篇
  2012年   158篇
  2011年   136篇
  2010年   126篇
  2009年   149篇
  2008年   159篇
  2007年   167篇
  2006年   176篇
  2005年   140篇
  2004年   133篇
  2003年   134篇
  2002年   143篇
  2001年   116篇
  2000年   124篇
  1999年   100篇
  1998年   103篇
  1997年   83篇
  1996年   71篇
  1995年   61篇
  1994年   45篇
  1993年   52篇
  1992年   40篇
  1991年   32篇
  1990年   30篇
  1989年   20篇
  1988年   20篇
  1987年   15篇
  1986年   20篇
  1985年   9篇
  1984年   6篇
  1982年   6篇
  1981年   5篇
  1980年   4篇
  1979年   2篇
  1978年   6篇
  1977年   1篇
  1975年   1篇
  1954年   2篇
排序方式: 共有3505条查询结果,搜索用时 171 毫秒
11.
增强型地热系统(EGS)用于通过人工形成地热储层的方法从深部低渗透性岩体中开采地热能;国际上常采用水力压裂辅以化学刺激的方法改造EGS 储层以提高其渗透率。本文以采自青海共和盆地的花岗闪长岩样品为对象,选用3种不同化学刺激剂(氢氧化钠、盐酸和土酸),在3组不同注入流速条件下开展了系统化学刺激实验。结果表明:注入盐酸和土酸后样品渗透率均有提高,且采用土酸时渗透率提高幅度明显大于盐酸;但注入氢氧化钠后,样品渗透率反而降低。在3类化学刺激剂中,土酸对长石类矿物的溶蚀能力最强,而氢氧化钠溶液对石英的溶蚀能力最强,但氢氧化钠溶液在溶解岩石样品裂隙表面矿物后极易形成非定形态二氧化硅或非定形态铝硅酸盐蚀变矿物并阻塞裂隙,反而对化学刺激效果造成负面影响。总体来看,土酸是青海共和盆地干热岩体的最佳化学刺激剂。在中等注入速度(3 mL·min-1)条件下,土酸对岩石样品的溶蚀程度就可达到最高;在此基础上进一步降低流速,则可能使溶解组分更易从液相中沉淀而充填于样品裂隙,导致样品渗透率有所下降。  相似文献   
12.
Exploring the chemical characterization of dissolved organic matter (DOM) is important for understanding the fate of laterally transported organic matter in watersheds. We hypothesized that differences in water-extractable organic matter (WEOM) in soils of varying land uses and rainfall events may significantly affect the quality and the quantity of stream DOM. To test our hypotheses, characteristics of rainfall-runoff DOM and WEOM of source materials (topsoil from different land uses and gullies, as well as typical vegetation) were investigated at two adjacent catchments in the Loess Plateau of China, using ultraviolet–visible absorbance and excitation emission matrix fluorescence with parallel factor analysis (PARAFAC). Results indicated that land-use types may significantly affect the chemical composition of soil WEOM, including its aromaticity, molecular weight, and degree of humification. The PARAFAC analysis demonstrated that the soils and stream water were dominated by terrestrial/allochthonous humic-like substances and microbial transformable humic-like fluorophores. Shifts in the fluorescence properties of stream DOM suggested a pronounced change in the relative proportion of allochthonous versus autochthonous material under different rainfall patterns and land uses. For example, high proportions of forestland could provide more allochthonous DOM input. This study highlights the relevance of soils and hydrological dynamics on the composition and fluxes of DOM issuing from watersheds. The composition of DOM in soils was influenced by land-use type. Precipitation patterns influenced the proportion of terrestrial versus microbial origins of DOM in surface runoff. Contributions of allochthonous, terrestrially derived DOM inputs were highest from forested landscapes.  相似文献   
13.
To better understand the mechanisms relating to hydrological regulations of chemical weathering processes and dissolved inorganic carbon (DIC) behaviours, high-frequency sampling campaigns and associated analyses were conducted in the Yu River, South China. Hydrological variability modifies the biogeochemical processes of dissolved solutes, so major ions display different behaviours in response to discharge change. Most ions become diluted with increasing discharge because of the shortened reactive time between rock and water under high-flow conditions. Carbonate weathering is the main source of major ions, which shows strong chemostatic behaviour in response to changes in discharge. Ions from silicate weathering exhibit a significant dilution effect relative to the carbonate-sourced ions. Under high temperatures, the increased soil CO2 influx from the mineralisation of organic material shifts the negative carbon isotope ratios of DIC (δ13CDIC) during the high-flow season. The δ13CDIC values show a higher sensitivity than DIC contents in response to various hydrological conditions. Results from a modified isotope-mixing model (IsoSource) demonstrate that biological carbon is a dominant source of DIC and plays an important role in temporal carbon dynamics. Furthermore, this study provides insights into chemical weathering processes and carbon dynamics, highlighting the significant influence of hydrological variability to aid understanding of the global carbon cycle.  相似文献   
14.
Analyses (n = 525) of chloride (Cl), bromide (Br), nitrate as nitrogen (NO3-N), sodium (Na+), calcium (Ca2+) and potassium (K+) in stream water, tile-drain water and groundwater were conducted in an urban-agricultural watershed (10% urban/impervious, 87% agriculture) to explore potential differences in the signature of Cl originating from an urban source as compared with an agricultural source. Only during winter recharge events did measured Cl concentrations exceed the 230 mg/L chronic threshold. At base flow, nearly all surface water and tile water samples had Cl concentrations above the calculated background threshold of 18 mg/L. Mann–Whitney U tests revealed ratios of Cl to Br (p = .045), to NO3-N (p < .0001), to Ca2+ (p < .0001), and to Na+ (p < .0001) to be significantly different between urban and agricultural waters. While Cl ratios indicate that road salt was the dominant source of Cl in the watershed, potassium chloride fertilizer contributed as an important secondary source. Deicing in watersheds where urban land use is minimal had a profound impact on Cl dynamics; however, agricultural practices contributed Cl year-round, elevating stream base flow Cl concentrations above the background level.  相似文献   
15.
Tephra shards for electron probe microanalysis are most efficiently extracted from peat using acid digestion, which removes organic material that hinders density separation methods. However, strong acids are known to alter glass chemical compositions, and several studies have examined how acid digestion affects rhyolitic volcanic glass. The focus on rhyolitic tephra in these studies leaves considerable uncertainty, as the dissolution rates of natural glasses (including tephra) are determined by the chemical composition and surface area/volume ratio, both of which vary in tephra deposits. Here, we use duplicate samples of basaltic, trachydacitic and rhyolitic tephra to examine physical and geochemical alteration following acid digestion. Scanning electron microscope imagery reveals no discernible degradation of glass surfaces, and electron probe microanalysis results from duplicate samples are statistically indistinguishable. These findings suggest the acid digestion protocol for organic peats does not significantly alter glass geochemistry regardless of shard morphologies or geochemical compositions.  相似文献   
16.
ABSTRACT

The localization of persons or objects usually refers to a position determined in a spatial reference system. Outdoors, this is usually accomplished with Global Navigation Satellite Systems (GNSS). However, the automatic positioning of people in GNSS-free environments, especially inside of buildings (indoors) poses a huge challenge. Indoors, satellite signals are attenuated, shielded or reflected by building components (e.g. walls or ceilings). For selected applications, the automatic indoor positioning is possible based on different technologies (e.g. WiFi, RFID, or UWB). However, a standard solution is still not available. Many indoor positioning systems are only suitable for specific applications or are deployed under certain conditions, e.g. additional infrastructures or sensor technologies. Smartphones, as popular cost-effective multi-sensor systems, is a promising indoor localization platform for the mass-market and is increasingly coming into focus. Today’s devices are equipped with a variety of sensors that can be used for indoor positioning. In this contribution, an approach to smartphone-based pedestrian indoor localization is presented. The novelty of this approach refers to a holistic, real-time pedestrian localization inside of buildings based on multi-sensor smartphones and easy-to-install local positioning systems. For this purpose, the barometric altitude is estimated in order to derive the floor on which the user is located. The 2D position is determined subsequently using the principle of pedestrian dead reckoning based on user's movements extracted from the smartphone sensors. In order to minimize the strong error accumulation in the localization caused by various sensor errors, additional information is integrated into the position estimation. The building model is used to identify permissible (e.g. rooms, passageways) and impermissible (e.g. walls) building areas for the pedestrian. Several technologies contributing to higher precision and robustness are also included. For the fusion of different linear and non-linear data, an advanced algorithm based on the Sequential Monte Carlo method is presented.  相似文献   
17.
In the classical view of metamorphic microstructures, fast viscous relaxation (and so constant pressure) is assumed, with diffusion being the limiting factor in equilibration. This contribution is focused on the only other possible scenario – fast diffusion and slow viscous relaxation – and brings an alternative interpretation of microstructures typical of high‐grade metamorphic rocks. In contrast to the pressure vessel mechanical model applied to pressure variation associated with coesite inclusions in various host minerals, a multi‐anvil mechanical model is proposed in which strong single crystals and weak grain boundaries can maintain pressure variation at geological time‐scales in a polycrystalline material. In such a mechanical context, exsolution lamellae in feldspar are used to show that feldspar can sustain large differential stresses (>10 kbar) at geological time‐scales. Furthermore, it is argued that the existence of grain‐scale pressure gradients combined with diffusional equilibrium may explain chemical zoning preserved in reaction rims. Assuming zero net flux across the microstructure, an equilibrium thermodynamic method is introduced for inferring pressure variation corresponding to the chemical zoning. This new barometric method is applied to plagioclase rims around kyanite in felsic granulite (Bohemian Massif, Czech Republic), yielding a grain‐scale pressure variation of 8 kbar. In this approach, kinetic factors are not invoked to account for mineral composition zoning preserved in rocks metamorphosed at high grade.  相似文献   
18.
朱鑫祥  刘琰 《岩矿测试》2021,(2):296-305
雪宝顶矿床位于四川省的松潘甘孜造山带中,以出产大颗粒含W-Sn-Be-F-P的矿物而闻名,前人对该矿床已经开展了大量的研究,但缺乏对粗粒矿物的主次痕量元素研究。本次研究采用X射线荧光光谱(XRF)、电子探针(EMPA)和电感耦合等离子体质谱(ICP-MS)技术对矿床中各矿物的主次痕量元素进行测试分析。结果显示,雪宝顶矿床中的绿柱石、白钨矿、锡石、白云母、萤石、磷灰石、电气石,除富含W、Sn、Be、Na、K、Ca等主要成矿元素外,还富集Li、Rb、Cs等碱金属元素和F、B、P等挥发份。其中,雪宝顶绿柱石中富含Li(3484~4243μg/g)、Rb(39.3~71.1μg/g)、Cs(2955~3526μg/g);白云母中Li、Rb和Cs元素含量分别高达4243μg/g、72.3μg/g和3526μg/g;磷灰石中除主量元素P外,F(4.48%~5.21%)含量相对较高;电气石中的B含量高达30990~32880μg/g。雪宝顶矿床中的花岗岩岩体W、Sn、Be、Li、Rb、Cs、F、B、P等元素相对富集,但CaO含量(0.46%~0.82%)相对较低。其中Li、F、B、P等元素对成矿元素在成矿流体内的富集起到了极大的促进作用。矿区内大理岩是一种富Ca的方解石大理岩,为成矿提供了大量的Ca元素,有利于粗粒矿物的大规模沉淀。因此,粗粒矿物中的W、Sn、Be、Li、Rb、Cs、F、B、P等元素主要来源于原始岩浆流体,大理岩地层为粗粒矿物提供了大量的Ca元素。  相似文献   
19.
为了研究喜马拉雅山北坡冬季大气气溶胶化学组分、光学特征及来源,2017年11—12月在珠穆朗玛峰站(QOMS)共采集22个PM2.5样品。结果显示:PM2.5中包括水溶性离子(WSIs)、有机质(OM)、元素碳(EC)在内的所有检测成分,总质量浓度为(3.36±1.06) μg?m-3;有机碳(OC)、元素碳(EC)和水溶性有机碳(WSOC)的浓度分别为(1.10±0.38)、(0.13±0.12)和(0.84±0.24) μg?m-3,浓度水平与偏远地区相当,低于季风前。碳质成分(OM+EC)占所有测试成分比例为73.6%,与之前珠峰站报道的研究结果相近。用PM2.5水溶性组分在365 nm处的光吸收效率(Abs365)来表征水溶性棕色碳(WS-BrC),它与WSOC、K+存在较好的相关性(R2=0.63、0.50),而与EC相关性弱(R2=0.01),说明水溶性棕色碳可能源于生物质燃烧和二次反应。MODIS火点信息和气团后向轨迹分析进一步表明,尼泊尔地区的燃烧活动是珠峰站冬季碳质气溶胶的重要来源。同时,喜马拉雅山脉独特的局地风场是污染物跨境传输至珠峰地区的重要原因。  相似文献   
20.
The Enhanced Geothermal System (EGS) is an artificial geothermal system that aims to economically extract heat from hot dry rock (HDR) through the creation of an artificial geothermal reservoir. Chemical stimulation is thought to be an effective method to create fracture networks and open existing fractures in hot dry rocks by injecting chemical agents into the reservoir to dissolve the minerals. Granite is a common type of hot dry rock. In this paper, a series of chemical stimulation experiments were implemented using acid and alkaline agents under high temperature and pressure conditions that mimic the environment of formation. Granite rock samples used in the experiments are collected from the potential EGS reservoir in the Matouying area, Hebei, China. Laboratory experimental results show that the corrosion ratio per unit area of rock is 3.2% in static acid chemical experiments and 0.51% in static alkaline chemical experiments. The permeability of the core is increased by 1.62 times in dynamic acid chemical experiments and 2.45 times in dynamic alkaline chemical experiments. A scanning electron microscope analysis of the core illustrates that secondary minerals, such as chlorite, spherical silica, and montmorillonite, were formed, due to acid-rock interaction with plagioclase being precipitated by alkaline-rock interactions. Masking agents in alkaline chemical agents can slightly reduce the degree of plagioclase formation. A chemical simulation model was built using TOUGHREACT, the mineral dissolution and associated ion concentration variation being reproduced by this reactive transport model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号